Free Homeopathy Journal Homeopathic Medicine Discussion Forums Homeopathy seminar Calendar Homeopathy Audio Lectures Video Lectures Free Homeopathy Books Download Homeopathic Crosswords

Evidence-Based Medicine: Neither Good Evidence nor Good Medicine

and


Hpathy Ezine, March, 2012 | Print This Post Print This Post |

The authors analyse the current gold-standard for medical decisions and find the flaws that makes this method more and more unpopular with clinicians.

Reprinted from: Orthomolecular Medicine News Service, December 7, 2011

http://orthomolecular.org/resources/omns/

(OMNS, Dec 7, 2011) Evidence-based medicine (EBM) is the practice of treating individual patients based on the outcomes of huge medical trials. It is, currently the self-proclaimed gold standard for medical decision-making, and yet it is increasingly unpopular with clinicians. Their reservations reflect an intuitive understanding that something is wrong with its methodology. They are right to think this, for EBM breaks the laws of so many disciplines that it should not even be considered scientific. Indeed, from the viewpoint of a rational patient, the whole edifice is crumbling.

The assumption that EBM is good science is unsound from the start. Decision science and cybernetics (the science of communication and control) highlight the disturbing consequences. EBM fosters marginally effective treatments, based on population averages rather than individual need. Its mega-trials are incapable of finding the causes of disease, even for the most diligent medical researchers, yet they swallow up research funds. Worse, EBM cannot avoid exposing patients to health risks. It is time for medical practitioners to discard EBM’s tarnished gold standard, reclaim their clinical autonomy, and provide individualized treatments to patients.

The key element in a truly scientific medicine would be a rational patient. This means that those who set a course of treatment would base their decision-making on the expected risks and benefits of treatment to the individual concerned. If you are sick, you want a treatment that will work for you, personally. Given the relevant information, a rational patient will choose the treatment that will be most beneficial. Of course, the patient is not in isolation but works with a competent physician, who is there to help the patient. The rational decision making unit then becomes the doctor-patient collaboration.

The idea of a rational doctor-patient collaboration is powerful. Its main consideration is the benefit of the individual patient. However, EBM statistics are not good at helping individual patients. Rather, they relate to groups and populations.

The Practice of Medicine

Nobody likes statistics. Okay, that might be putting it a bit strongly but, with obvious exceptions (statisticians and mathematical types), many people do not feel comfortable with statistical data. So if you feel inclined to skip this article in favor of something more agreeable, please wait a minute. For although we are going to talk about statistics, our ultimate aim is to make medicine simpler to understand and more helpful to each individual patient.

The current approach to medicine is “evidence-based.” This sounds obvious but, in practice, it means relying on a few large-scale studies and statistical techniques to choose the treatment for each patient. Practitioners of EBM incorrectly call this process using the “best evidence.” In order to restore the authority for decision-making to individual doctors and patients, we need to challenge this orthodoxy, which is no easy task. Remember Linus Pauling: despite being a scientific genius, he was condemned just for suggesting that vitamin C could be a valuable therapeutic agent.

Historically, physicians, surgeons and scientists with the courage to go against prevailing ideas have produced medical breakthroughs. Examples include William Harvey’s theory of blood circulation (1628), which paved the way for modern techniques such as cardiopulmonary bypass machines; James Lind’s discovery that limes prevent scurvy (1747); John Snow’s work on transmission of cholera (1849); and Alexander Fleming’s discovery of penicillin (1928). Not one of these innovators used EBM. Rather, they followed the scientific method, using small, repeatable experiments to test their ideas. Sadly, practitioners of modern EBM have abandoned the traditional experimental method, in favor of large group statistics.

What Use are Population Statistics?

Over the last twenty years, medical researchers have conducted ever larger trials. It is common to find experiments with thousands of subjects, spread over multiple research centers. The investigators presumably believe their trials are effective in furthering medical research. Unfortunately, despite the cost and effort that go into them, they do not help patients. According to fundamental principles from decision science and cybernetics, large-scale clinical trials can hardly fail to be wasteful, to delay medical progress, and to be inapplicable to individual patients.

Much medical research relies on early twentieth century statistical methods, developed before the advent of computers. In such studies, statistics are used to determine the probability that two groups of patients differ from each other. If a treatment group has taken a drug and a control group has not, researchers typically ask whether any benefit was caused by the drug or occurred by chance. The way they answer this question is to calculate the “statistical significance.” This process results in a p-value: the lower the p-value, the less likely the result was due to chance. Thus, a p-value of 0.05 means a chance result might occur about one time in 20. Sometimes a value of less than one-in-one-hundred (p < 0.01), or even less than one-in-a-thousand (p < 0.001) is reported. These two p-values are referred to as “highly significant” or “very highly significant” respectively.

Significant Does Not Mean Important

We need to make something clear: in the context of statistics, the term significant does not mean the same as in everyday language. Some people assume that “significant” results must be “important” or “relevant.” This is wrong: the level of significance reflects only the degree to which the groups are considered to be separate. Crucially, the significance level depends not only on the difference between the studied groups, but also on their size. So, as we increase the size of the groups, the results become more significant-even though the effect may be tiny and unimportant.

Consider two populations of people, with very slightly different average blood pressures. If we take 10 people from each, we will find no significant difference between the two groups because a small group varies by chance. If we take a hundred people from each population, we get a low level of significance (p < 0.05), but if we take a thousand, we now find a very highly significant result. Crucially, the magnitude of the small difference in blood pressure remains the same in each case. In this case a difference can be highly significant (statistically), yet in practical terms it is extremely small and thus effectively insignificant. In a large trial, highly significant effects are often clinically irrelevant. More importantly and contrary to popular belief, the results from large studies are less important for a rational patient than those from smaller ones.

Steve Hickey

Steve Hickey holds a PhD in Medical Biophysics from the University of Manchester, England. His PhD was on the development, aging, function and failure of the intervertebral disk. He carried out research in the fields of medical imaging and biophysics, and his later research included pattern recognition, artificial intelligence, computer science, and decision science. He has published hundreds of scientific articles in a variety of disciplines. Dr. Hickey is co-author, with Hilary Roberts, of Ascorbate: The Science of Vitamin C; Cancer: Nutrition and Survival; Ridiculous Dietary Allowance; The Cancer Breakthrough, and The Vitamin Cure for Heart Disease.

Hilary Roberts

Comments

  1. Linda Santini

    August 18, 2012

    In a visit to my (American) allopathic family doctor a couple of years ago, she used the term, “Evidence-Based Medicine,” so I responded, “Evidence of what – that it cures the disease? Or do you mean evidence that it suppresses the symptoms?”

    Allopathic docs are good for a few things but curing anybody isn’t on the list.

Add a comment

You must be logged in to comment.

Homeopathy 4 Everyone
Subscribe the world's most popular homeopathy journal for Free!
Never display this again